TRANSPORT RESEARCH ARENA

LISBON 2022

Towards functional requirements for automated ground transport vehicles operating under harsh weather conditions

Josué Manuel Rivera Velázquez

Centre for Studies and Expertise on Risks, the Environment, Mobility and Urban Planning (CEREMA), France

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101006817. The content of this presentation reflects only the author's view. Neither the European Commission nor the INEA is responsible for any use that may be made of the information it contains.

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

The AWARD concept consists in developing an autonomous transport system based on driverless electric heavy-duty vehicles, capable of conducting key 24/7 logistics operations in mixed traffic, whether in confined areas or on public roads.

Four use cases:

- Use Case 1: Loading and transport with an automated forklift
- **Use Case 2**: Hub-to-hub shuttle service from warehouse/production site to logistics hubs
- Use Case 3: Automated baggage tractor on airside in Avinor OSL Gardermoen airport
- Use Case 4: Trailer transfer operations and automated ship loading in Rotterdam port

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

1. In the AWARD project, the concept of **System of Systems (SoS)** is used to denote a set of four interoperable systems belonging to the **Automated Ground goods Transport System (AGTS)**.

/ ~ *

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

2. The **Operational Design Domain (ODD)** for the AWARD Use Cases represents the operating conditions under which an ADS is designed to operate.

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

3. Functional Requirements (FR) detail system behaviour and serve to specify what a system (or system of systems) shall be capable of doing.

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

 In this paper the methodology used to define the Functional Requirements (FR) needed for the AGTS setup is presented. This methodology defines FR concerning Operational Design Domain (ODD)- and AGTS-elements.

ODD				Requirements			
Category	Group	Element	Parameter	Relevance for system?	Why is this relevant?	Functional requirement	
Environmental conditions	Weather	Weather conditions	lce accumulation	ADV	Cannot detect edges/road markings correctly	Vehicle must be able to use alternative location detection means	
Environmental conditions	Weather	Weather conditions	lce accumulation	LOFM	Some roads cannot be used for jobs	Must keep track of vehicle position	
Operational constraints	Logistics	Logistics process	Handling of goods - timeliness, positioning	SI	To support accurate positioning	Provide position data (e.g., via markers, dGPS,)	
Operational constraints	Logistics	Logistics process	Handling of goods - timeliness, positioning	SLS	To ensure timeliness	SLS prepares goods unloading/loading	

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

 In this paper the methodology used to define the Functional Requirements (FR) needed for the AGTS setup is presented. This methodology defines FR concerning Operational Design Domain (ODD)- and AGTS-elements.

ODD				Requirements			
Category	Group	Element	Parameter	Relevance for system?	Why is this relevant?	Functional requirement	
Environme ntal conditions	Weather	Weather conditions	lce accumulatio n	ADV	Cannot detect edges/road markings correctly	Vehicle must be able to use alternative location detection means	
Environme ntal conditions	Weather	Weather conditions	lce accumulatio n	LOFM	Some roads cannot be used for jobs	Must keep track of vehicle position	
Operational constraints	Logistics	Logistics process	Handling of goods - timeliness, positioning	SI	To support accurate positioning	Provide position data (e.g., via markers, dGPS,)	
Operational constraints	Logistics	Logistics process	Handling of goods - timeliness, positioning	SLS	To ensure timeliness	SLS prepares goods unloading/loading	

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

 In this paper the methodology used to define the Functional Requirements (FR) needed for the AGTS setup is presented. This methodology defines FR concerning Operational Design Domain (ODD)- and AGTS-elements.

System	Func	ODD					
	Aggregated	Context-specific explanation	Use case	Category	Group	Element	Parameter
ADV	Shall have fallback systems for positioning, detection, etc.	The ADV shall have a fallback system for positioning under ice accumulation to prevent bad detection of edges and road markings	1, 2, 3, 4	Environmental condition	Weather	Weather conditions	lce accumulation
LOFM	Shall keep track of vehicle position	The LOFM shall keep track of the vehicle position so that it can inform the vehicle about roads that cannot be used for task completion due to ice accumulation	1, 2, 3, 4	Environmental condition	Weather	Weather conditions	lce accumulation
SI	Shall be able to detect and report real- time position	The SI shall be able to detect and report real-time position information in order to obtain accurate execution of the assignment and support timely delivery	1, 2, 3, 4	Operational constraints	Logistics	Logistics process	Handling of goods - timeliness, positioning
SLS	Shall carry out loading/unloading process	The SLS shall prepare and carry out loading/unloading to ensure timeliness	1, 2, 3, 4	Operational constraints	Logistics	Logistics process	Handling of goods - timeliness, positioning

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

For functional requirements definition, a four-step procedure was followed:

- 1. Define context of functional requirements,
- 2. Define general functional requirements,
- 3. Aggregate general functional requirements,
- 4. Define use case specific functional requirements.

J. M. Rivera Velázquez*, L. Khoudour, R. Wahl, R. Ronke, M. Neubauer, T. Hovland, M. Reinthaler

- This interlinked documentation allows to derive functional requirements for a certain subsystem within a specific use case and investigate especially the requirements related to the ODD category physical infrastructure.
- It should be noted that the functional requirements are not to be considered mandatory. These are "should-have" requirements and should be assessed by the use cases before decisions on whether and how they can comply.

Thank you!

traconference.eu

HOSTED AND ORGANISED BY:

CO-ORGANISED BY

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101006817. The content of this presentation reflects only the author's view. Neither the European Commission nor the INEA is responsible for any use that may be made of the information it contains.